Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Virol ; 97(6): e0063523, 2023 Jun 29.
Article in English | MEDLINE | ID: covidwho-2327915

ABSTRACT

The stem-loop II motif (s2m) is an RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over 25 years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also compared the secondary structure of the 3' UTR of wild-type and s2m deletion viruses using selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) and dimethyl sulfate mutational profiling and sequencing (DMS-MaPseq). These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'-UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), contain functional structures to support virus replication, translation, and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is an RNA structural element that is found in many RNA viruses. This motif was discovered over 25 years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that s2m is dispensable for SARS-CoV-2.


Subject(s)
COVID-19 , RNA Viruses , Viruses , Animals , Cricetinae , SARS-CoV-2/genetics , 3' Untranslated Regions , Mesocricetus , Mutation
2.
J Virol ; 97(3): e0003823, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2242074

ABSTRACT

Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3' untranslated region (3' UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus. Using a reverse genetic system to generate recombinant viruses, we investigated the requirement of the s2m structure in the replication of IBV, a globally distributed economically important Gammacoronavirus that infects poultry causing respiratory disease. Deletion of three nucleotides predicted to destabilize the canonical structure of the s2m or the deletion of the nucleotides corresponding to s2m impacted viral replication in vitro. In vitro passaging of the recombinant IBV with the s2m sequence deleted resulted in a 36-nucleotide insertion in place of the deletion, which was identified to be composed of a duplication of flanking sequences. A similar result was observed following serial passage of human astrovirus with a deleted s2m sequence. RNA modeling indicated that deletion of the nucleotides corresponding to the s2m impacted other RNA structures present in the IBV 3' UTR. Our results indicated for both IBV and human astrovirus a preference for nucleotide occupation in the genome location corresponding to the s2m, which is independent of the specific s2m sequence. IMPORTANCE Coronaviruses infect many species, including humans and animals, with substantial effects on livestock, particularly with respect to poultry. The coronavirus RNA genome consists of structural elements involved in viral replication whose roles are poorly understood. We investigated the requirement of the RNA structural element s2m in the replication of the Gammacoronavirus infectious bronchitis virus, an economically important viral pathogen of poultry. Using reverse genetics to generate recombinant IBVs with either a disrupted or deleted s2m, we showed that the s2m is not required for viral replication in cell culture; however, replication is decreased in tracheal tissue, suggesting a role for the s2m in the natural host. Passaging of these viruses as well as human astrovirus lacking the s2m sequence demonstrated a preference for nucleotide occupation, independent of the s2m sequence. RNA modeling suggested deletion of the s2m may negatively impact other essential RNA structures.


Subject(s)
Infectious bronchitis virus , Mamastrovirus , Mutagenesis, Insertional , Animals , Humans , 3' Untranslated Regions/genetics , Chickens/virology , Infectious bronchitis virus/genetics , Mamastrovirus/genetics , Mutagenesis, Insertional/genetics , Poultry Diseases/virology , RNA, Viral/genetics , Virus Replication/genetics , RNA Stability/genetics , Sequence Deletion/genetics
3.
Biochem Biophys Res Commun ; 644: 55-61, 2023 02 12.
Article in English | MEDLINE | ID: covidwho-2165102

ABSTRACT

RNA structure plays an important role in regulating cellular function and there is a significant emerging interest in targeting RNA for drug discovery. Here we report the identification of 4-aminoquinolines as modulators of RNA structure and function. Aminoquinolines have a broad range of pharmacological activities, but their specific mechanism of action is often not fully understood. Using electrophoretic mobility shift assays and enzymatic probing we identified 4-aminoquinolines that bind the stem-loop II motif (s2m) of SARS-CoV-2 RNA site-specifically and induce dimerization. Using fluorescence-based RNA binding and T-box riboswitch functional assays we identified that hydroxychloroquine binds the T-box riboswitch antiterminator RNA element and inhibits riboswitch function. Based on its structure and riboswitch dose-response activity we identified that the antagonist activity of hydroxychloroquine is consistent with it being a conformationally restricted analog of the polyamine spermidine. Given the known role that polyamines play in RNA function, the identification of an RNA binding ligand with the pharmacophore of a conformationally restricted polyamine has significant implications for further elucidation of RNA structure-function relationships and RNA-targeted drug discovery.


Subject(s)
COVID-19 , Riboswitch , Humans , Polyamines , Pharmacophore , Hydroxychloroquine , RNA, Viral , SARS-CoV-2/genetics , Aminoquinolines/pharmacology , RNA, Bacterial/genetics , Nucleic Acid Conformation
4.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2123786

ABSTRACT

Antiviral agents are needed for the treatment of SARS-CoV-2 infections and to control other coronavirus outbreaks that may occur in the future. Here we report the identification and characterization of RNA-binding compounds that inhibit SARS-CoV-2 replication. The compounds were detected by screening a small library of antiviral compounds previously shown to bind HIV-1 or HCV RNA elements with a live-virus cellular assay detecting inhibition of SARS-CoV-2 replication. These experiments allowed detection of eight compounds with promising anti-SARS-CoV-2 activity in the sub-micromolar to micromolar range and wide selectivity indexes. Examination of the mechanism of action of three selected hit compounds excluded action on the entry or egress stages of the virus replication cycle and confirmed recognition by two of the molecules of conserved RNA elements of the SARS-CoV-2 genome, including the highly conserved S2m hairpin located in the 3'-untranslated region of the virus. While further studies are needed to clarify the mechanism of action responsible for antiviral activity, these results facilitate the discovery of RNA-targeted antivirals and provide new chemical scaffolds for developing therapeutic agents against coronaviruses.

5.
Biochem Biophys Res Commun ; 545: 75-80, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1385064

ABSTRACT

Antiviral drug discovery continues to be an essential complement to vaccine development for overcoming the global pandemic caused by SARS-CoV-2. The genomic RNA of SARS-CoV-2 contains structural elements important for viral replication and/or pathogenesis making them potential therapeutic targets. Here we report on the stem-loop II motif, a highly conserved noncoding RNA element. Based on our homology model we determined that the G to U transversion in the SARS-CoV-2 stem-loop II motif (S2MG35U) forms a C-U base-pair isosteric to the C-G base-pair in the early 2000's SARS-CoV (S2M). In addition, chemo-enzymatic probing and molecular dynamics simulations indicate the S2MG35U conformational profile is altered compared to S2M in the apical loop region. We explored S2MG35U as a potential drug target by docking a library of FDA approved drugs. Enzymatic probing of the best docking ligands (aminoglycosides and polymyxins) indicated that polymyxin binding alters the conformational profile and/or secondary structure of the RNA. The SARS-CoV-2 stem-loop II motif conformational differences due to nucleotide transversion and ligand binding are highly significant and provide insight for future drug discovery efforts since the conformation of noncoding RNA elements affects their function.


Subject(s)
RNA, Viral/chemistry , SARS-CoV-2/genetics , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Base Pairing , Binding Sites , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA, Untranslated/chemistry , RNA, Untranslated/metabolism , RNA, Viral/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism
6.
J Virol ; 95(14): e0066321, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1291038

ABSTRACT

RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.


Subject(s)
COVID-19 , Genome, Viral , Nucleotide Motifs , RNA Folding , RNA, Viral , SARS-CoV-2/physiology , Virus Replication , Animals , COVID-19/genetics , COVID-19/metabolism , Chlorocebus aethiops , HEK293 Cells , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , Vero Cells
7.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: covidwho-1020338

ABSTRACT

SARS-CoV-2 is a member of the subgenus Sarbecovirus and thus contains the genetic element s2m. We have extensively mined nucleotide data in GenBank in order to obtain a comprehensive list of s2m sequences both in the four virus families where s2m has previously been described and in other groups of organisms. Surprisingly, there seems to be a xenologue of s2m in a large number of insect species. The function of s2m is unknown, but our data show a very high degree of sequence conservation both in insects and in viruses and that the version of s2m found in SARS-CoV-2 has unique features, not seen in any other virus or insect strains.


Subject(s)
Gene Transfer, Horizontal , Genome, Viral , Insecta/genetics , SARS-CoV-2/genetics , Animals , Data Mining , Phylogeny , RNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL